Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Phys Chem Chem Phys ; 24(34): 20371-20380, 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2000945

ABSTRACT

New variants of SARS-CoV-2 are being reported worldwide. The World Health Organization has reported Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529) as the variants of concern. There are speculations that the variants might evade the host immune responses induced by currently available vaccines and develop resistance to drugs under consideration. The first step of viral infection in COVID-19 occurs through the interaction of the spike protein's receptor-binding domain (RBD) with the peptidase domain of the human ACE-2 (hACE-2) receptor. This study aims to get a molecular-level understanding of the mechanism behind the increased infection rate in the alpha variant. We have computationally studied the spike protein interaction in both the wild-type and B.1.1.7 variant with the hACE-2 receptor using molecular dynamics and MM-GBSA based binding free energy calculations. The binding free energy difference shows that the mutant variant of the spike protein has increased binding affinity for the hACE-2 receptor (i.e. ΔG(N501Y,A570D) is in the range -7.2 to -7.6 kcal mol-1) and the results were validated using Density functional theory. We demonstrate that with the use of state-of-the-art computational approaches, we can, in advance, predict the virulent nature of variants of SARS-CoV-2 and alert the world healthcare system.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus/genetics , Virulence
2.
Adv Exp Med Biol ; 1322: 261-284, 2021.
Article in English | MEDLINE | ID: covidwho-1353662

ABSTRACT

Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.


Subject(s)
Biological Products , Virus Diseases , Antiviral Agents/therapeutic use , Humans , Insulin , Peptides , Virus Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL